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Pioneers

J.M.Howie (1966) The maps from a finite set to itself that are
not onto can be presented as products of idempotents.
J.A. Erdos (1968): singular matrices over fields.
J. Laffey (1983): singular matrices over commutative
euclidean domains.
Hannah and O’Meara decomposition of some elements in a
von Neumann ring into product of idempotent elements.
Bhaskara Rao (2009) considered matrices over commutative
PID’s.
W. Ruitenberg (1993) Matrices over Hermite domains.
There are connections between decompositions into products
of idempotents and factorizations of invertible matrices into
product of elementary matrices. (Facchini-Leroy(2016),
Salce-Zanardo,...)
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Examples and particular decompositions

Examples

(a)

(
a 0
0 0

)
=

(
1 1
0 0

)(
1 0

a− 1 0

)
.

(a’)

(
a 0
0 0

)
=

(
1 a
0 0

)(
0 0
0 1

)(
1 0
1 0

)
.

(b)

(
a ac
0 0

)
=

(
1 1 + c
0 0

)(
1− ca + c c − cac + c2

a− 1 ac − c

)
.

(c)

(
ac a
0 0

)
=

(
1 a
0 0

)(
0 0
c 1

)
,

(d) with b ∈ U(R),

(
a b
0 0

)
=

(
b(b−1a) b

0 0

)
is factorized as in

(c).
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Particular matrices

Theorem

(a) If R is a ring and A ∈ Mn(R) is strictly upper triangular then
A is a product of idempotent matrices.

(b) If n > 1 and a matrix A ∈ Mn(R) (resp. A ∈ Mn(R+)) has
only one nonzero row, then it is a product of (resp.
nonnegative) idempotent matrices.
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Question and particular matrices

Question

Main Question : Can real nonnegative singular matrices be
decomposed into product of nonnegative idempotents ?

Lemma (Particular matrices)

(a) If B ∈ Mn×n(R+) is an n × n matrix which is a product of
nonnegative idempotents, then the same is true for the matrix(
B C
0 0

)
where C ∈ Mn×1(R) (resp. C ∈ Mn×1(R+)) and

the other blocks are of appropriate sizes.

(b) If A ∈ Mn(R) (resp. A ∈ Mn(R+)), n ≥ 3, has all its i th rows
and columns zero whenever i ≥ 3, then A is a product of
(resp. nonnegative ) idempotent matrices.
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Rank one

Proposition

Let A ∈ Mn(R+), n > 1, be a nonnegative matrix of rank 1. Then
A is a product of nonnegative idempotent matrices.

Remark (A.Alahamadi,S.K. Jain, A.L., Sathaye,2016)

It can be shown that in fact rank 1 nonnegative matrices can be
decomposed into a product of three idempotent nonnegative
matrices.
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Rank two

Theorem

Let A ∈ Mn(R+), n > 2, be a nonnegative singular matrix of rank
2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the following easy lemma:

Lemma

Let S ⊂ (R+)n be a finite set such that dimR < S >≤ 2. Then
there exist s1, s2 ∈ S such that every element of S is a positive
linear combination of s1 and s2.
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Counter-example

For singular nonnegative matrices of higher rank the decomposition
does not necessarily exist:

Example

Aα :=


α α 0 0
0 0 α α
α 0 α 0
0 α 0 α

 , where α ∈ R+, α 6= 0.

If Aα = E1 . . .En is such that E 2
i = Ei ∈ Mn(R+) then Aα = AαEn

and a direct computation shows that En = Id .. Remark that A 1
2

is

a positive doubly stochastic matrix.
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Nilpotent matrices

Proposition

If A is Nonnegative nilpotent there exists a permutation matrix
such that PAPt is an upper triangular nonnegative matrix.

Corollary

Nonnegative nilpotent matrices are product of nonnegative
idempotent matrices.

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain) Product of nonnegative idempotents



History
Particular decompositions

Nonnegative singular matrices
special families of nonnegative matrices

...and mORE

Nilpotent matrices

Proposition

If A is Nonnegative nilpotent there exists a permutation matrix
such that PAPt is an upper triangular nonnegative matrix.

Corollary

Nonnegative nilpotent matrices are product of nonnegative
idempotent matrices.

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain) Product of nonnegative idempotents



History
Particular decompositions

Nonnegative singular matrices
special families of nonnegative matrices

...and mORE

quasi-permutation matrices

Definition

A matrix A ∈ Mn,n(R+) is a quasi-permutation matrix if each row
and each column has at most one nonzero element.

Theorem

A nonnegative singular quasi-permutation matrix is always a
product of nonnegative idempotent matrices.
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Nonnegative Von Neumann inverses

Definition

A nonnegative matrix A has a nonngative von Neumann inverse if
there exists a nonnegative matrix X such that A = AXA.

For a nonnegative matrix A to have a nonegative von Neumann
inverse, it must be of a very special form (quasi permutation by
block with all blocks of rank one). Using this form and the previous
result on quasi-permutation matrices we get the following theorem.

Theorem

A nonnnegative singular matrix with nonnegative von Neumann
inverse is a product of nonnegative idempotent matrices.
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Periodic matrices

Definitions

1 A matrix A is periodic if there exist positive integers l < s,
such that Al = As

2 The index of A ∈ Mn(R) is the smallest k ≥ 0 such that
rank(Ak) = rank(Ak+1)

Theorem

Let A be a nonnegative periodic matrix with no zero row or zero
column. If either the index of A is 1 or A > An for some n, then A
is a product of nonnegative idempotent matrices.
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0-1 definite matrices

Definition

A matrix is a 0− 1 matrix if its entries consist only of O and 1’s.

Theorem

Let A ∈ Mn(R) be a singular definite 0− 1 matrix. Then A is a
product of nonnegative idempotent matrices.
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Ore Extension
B) Polynomial maps and roots
C) Pseudo linear transformations
(σ, δ)-codes

Plan
1 A) Ore extensions.

2 B) Polynomial maps.

3 C) Pseudo-linear transformations.

4 D) (σ, δ)-codes.

5 E) W (σ, δ)-codes.

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain) Product of nonnegative idempotents



History
Particular decompositions

Nonnegative singular matrices
special families of nonnegative matrices

...and mORE

Ore Extension
B) Polynomial maps and roots
C) Pseudo linear transformations
(σ, δ)-codes

Layout

1 History

2 Particular decompositions

3 Nonnegative singular matrices

4 special families of nonnegative matrices

5 ...and mORE
Ore Extension
B) Polynomial maps and roots
C) Pseudo linear transformations
(σ, δ)-codes
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Ore Extension
B) Polynomial maps and roots
C) Pseudo linear transformations
(σ, δ)-codes

Ore extensions

A a ring, D a derivation of A, for a ∈ A La is the left multiplication
by a.

D ◦ La = La ◦ D + LD(a)

Formalizing;
Xa = aX + D(a)

More generally:
Assume the polynomials in X can be written as

∑
aiX

i and there
are maps σ, δ from A to A such that

Xa = σ(a)X + δ(a)

Then associativity of the product will give that σ ∈ End(A) and δ
is a σ derivation i.e. δ ∈ End(A,+) and

δ(ab) = σ(a)δ(b) + δ(a)b
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Ore Extension
B) Polynomial maps and roots
C) Pseudo linear transformations
(σ, δ)-codes

Examples

The set of these polynomials form a ring denoted by
R = A[X ;σ, δ] (O. Ore, 1930’s)

1 R = C[t;−]; we have ti = −it and t2a = t(at) = at2.
R

R(t2+1)
∼= H.

2 p a prime, q = pl and R = Fq[t;σ]; where σ(x) = xp. The
center of R is Fp[t l ].

3 k a field, A1 = k[x ][y ; Id ., d
dx ] the first Weyl algebra.

If char(k) = p > 0,Z (A1) = k[xp, yp]
If char(k) = 0 then Z (A1) = k and A1 is simple.
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Inner and not inner

The σ inner derivation induced by an element a ∈ A is defined
byδa ∈ End(A,+) by δa(x) = ax − σ(x)a, for x ∈ A.

Such a derivation can be ”erased”: A[t, σ, δa] = A[t − a, σ]. Finite
ring can have non inner σ-derivation even if σ 6= Id ..

Example

Let q = pl , p a prime and A be the subring of M2(Fq) given by

A = {
(
a b
0 c

)
|a, b ∈ Fq, c ∈ Fp}.

Define σ and δ as follows:

σ(

(
a b
0 c

)
) =

(
ap bp

0 c

)
and δ(

(
a b
0 c

)
) =

(
0 bp

0 0

)
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Example

Let q = pl , p a prime and A be the subring of M2(Fq) given by

A = {
(
a b
0 c

)
|a, b ∈ Fq, c ∈ Fp}.

Define σ and δ as follows:

σ(

(
a b
0 c

)
) =

(
ap bp

0 c

)
and δ(

(
a b
0 c

)
) =

(
0 bp

0 0

)
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Polynomial maps

f (t) ∈ R = A[t;σ, δ], a ∈ A, there exist q(t) ∈ R such that
f (t)− q(t)(t − a) ∈ A. This element is naturally defined to be the
evaluation of f (t) at a, denoted f (a).

f (t) = q(t)(t − a) + f (a)

Let us compute: t2 = t(t − a) + ta = t(t − a) + σ(a)t + δ(a) =
t(t − a) + σ(a)(t − a) + σ(a)a + δ(a)

Hence t2(a) = σ(a)a + δ(a)

We will write Ni (a) instead of t i (a). Exercise: Compute N3(a)
Recurrence formulas:

N0(a) = 1, N1(a) = a, Ni+1(a) = σ(Ni (a))a + δ(Ni (a))
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Roots

For f (t) =
∑n

i=0 ai t
i ∈ R and a ∈ A we have

f (a) =
∑n

i=0 aiNi (a). a ∈ A is a right root of f (t) if f (a) = 0.

Examples

1 If σ = Id . and δ = 0 we have the usual evaluation Ni (a) = ai .
But A can be non commutative so j is not a right root of
(x − j)(x − i) ∈ H[x ].

2 Many (right) roots: f (x) = x2 + 1 ∈ H[x ] then f (yiy−1) = 0
for 0 6= y ∈ H.

3 (Wedderburn) D a division ring f (x) ∈ Z (D)[x ] and d ∈ D
such that f (d) = 0 then there exists elements
a1, . . . an ∈ D \ 0 such that

f (x) = (x − da1) . . . (x − dan).
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Examples

More examples:

Examples

1 Consider t2 ∈ A1(k) = k[x ][t; Id ., d
dx ] we have

t2 = (t − 1
x )(t + 1

x ).

2 Gordon Motzkin: Let D be a division ring and f (x) ∈ D[x ] the
roots of F (x) in D belong to at most deg(f ) conjugacy classes

A nice formula: let f (t), g(t) ∈ R = D[t;σ, δ] where D is a dvision
ring and a ∈ D.

(fg)(a) =

{
0 if g(a) = 0

f (ag(a))g(a) if g(a) 6= 0

where for a ∈ D and c ∈ D∗ we define ac = σ(c)ac−1 + δ(c)c−1
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Pseudo linear transformations

A, σ, δ, as usual R = A[t;σ, δ]

Definition

Let AV be a left module. A map T ∈ End(V ,+) is a P.L.T. if

T (αv) = σ(α)T (v) + δ(α)v ∀α ∈ A, ∀v ∈ V

AV then becomes a left R-module: (
∑n

i=0 ai t
i ).v =

∑n
i=0 aiT

i (v)
for v ∈ V

Left R-modules ⇔ Left A-module and a P.L.T.

Examples

1 δ is a P.L.T. defined on V = A

2 Let C ∈ Mn(A) then TC : An −→ An defined by
TC (v) = σ(v)C + δ(v) for any v ∈ An, is a P.L.T.
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More PLT

Proposition

Let R = A[t;σ, δ].

1 p(t) ∈ R, a ∈ A, p(a) = p(Ta)(1)

2 For x ∈ U(R) p(ax)x = p(Ta)(x)

3 If T :A V −→A V is a PLT, then the map

φT : R −→ End(V ,+) : f (t) 7→ f (T )

is a ring homomorphism.

4 for f , g ∈ R and a ∈ A, we have (fg)(a) = f (Ta)(g(a))

5 If A = D is a division ring and a ∈ D then ker(P(Ta)) is a
right vector space over the division ring
C (a) := {x ∈ D∗|ax = a} ∪ {0}
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Factorizations

Theorem {Lam, L.}
Let D be a division ring, σ ∈ End(D) and δ a σ-derivation. A
polynomial f (t) ∈ D[t;σ, δ] has roots in l (σ, δ)-conjugacy classes
∆(ai ) := {axi = σ(x)aix

−1 + δ(x)x−1|x ∈ D∗}. We have

l∑
i=1

DimCi
Ker(f (Tai )) ≤ deg(f (t))

The equality occurs if an only if f (t) is a Wedderburn polynomial.
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Ulmer, Boucher

Just to give an idea: there are 603 different nontrivial right divisors
of t14 − 1 ∈ F4[t; θ] with θ(z) = z2 comparing with 25 different
factors of x14 − 1 ∈ F4[x ].
F. Ulmer, D. Boucher started to use skew polynomial rings (δ = 0)
to create codes and study them. As an alphabet they not only used
fields but also cyclic modules of the form R

Rf (t) where R = F [t;σ].

Example

In F4[t; θ] with θ(z) = z2 where α ∈ F4 satisfies α2 + α + 1 = 0,
we have: t4 + t2 + 1 = (t2 + t + 1)2 = (t2 + α2)(t2 + α) =
(t2 + α)(t2 + α2) = (t2 + α2t + 1)2 = (t2 + αt + 1)2,
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C < R
Rf with R = A[t;σ, δ]

Definition

Let f (t), g(t) ∈ R = A[t;σ, δ] monic and such that f (t) ∈ Rg(t).
A subset of C ⊆ An consisting of the coordinates of the elements of
Rg/Rf in the basis {1, t, . . . , tn−1} is called a cyclic (f , σ, δ)-code.

Theorem

Let g(t) :=
∑r

i=0 gi t
i ∈ R be a monic right divisor of f (t).

(a) The code corresponding to Rg/Rf is a free left A-module of
dimension n − r where deg(f ) = n and deg(g) = r .

(b) If v := (a0, a1, . . . , an−1) ∈ C then Tf (v) ∈ C .

(c) The rows of the matrix generating the code C are given by

(Tf )k(g0, g1, . . . , gr , 0, . . . , 0), for 0 ≤ k ≤ n − r − 1.
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Example

Consider f (t) = t5 − 1 ∈ R = F5[X ]
X 5−1 [t; Id ., d

dX ]. In this case

f (x) = f (x + x4) = 0 (with x = X + (X 5 − 1)) and
g(t) = [t − x , t − (x + x4)]l = t2 − 2xt + x2 − 1. The generating
matrix of the code corresponding to the module Rg/Rf is given by:x2 − 1 −2x 1 0 0

2x x2 + 2 −2x 1 0
2 4x x2 −2x 1


Lemma

f (t), p(t), q(t) =
∑n−1

i=0 ∈ R = A[t;σ, δ] such that
deg(q(t)) < deg(f (t)) = n. Then
p(t)q(t) ∈ Rf (t)⇔ p(Tf )(q0, . . . , qn−1) = (0, . . . , 0)
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Theorem

Let f , g , h, h′ ∈ R monic such that f = gh = h′g and let C denote
the code corresponding to the cyclic module Rg/Rf . Then the
following statements are equivalent:

(i) (c0, . . . , cn−1) ∈ C ,

(ii) (
∑n−1

i=0 ci t
i )h(t) ∈ Rf ,

(iii)
∑n−1

i=0 ciT
i
f (h) = 0,

Definition

For a left (resp. right) linear code C ⊆ An, we say that a matrix H
is a control matrix if C = lann(H) (resp. C = rann(H)).
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Corollary

f , g , h, h′ ∈ R = A[t;σ, δ] monic such that f = gh = h′g . Then

H =t (h,Tf (h), . . . ,T
deg(f )−1
f (h)) is a control matrix of the code

corresponding to Rg/Rf .

Example

f (t) = t5 − 1 = g(t)h(t) = h(t)g(t) ∈ R := F5[x ]/(x5 − 1)[t; d
dx ],

with h(t) = t3 + 2xt2 + (3x2 + 2)t + (4x3 + 3x) and
g(t) := t2 − 2xt + x2 − 1 . C corresponding to Rg(t)/(t5 − 1).

H =


4x3 + 3x 3x2 + 2 2x 1 0
2x2 + 3 4x3 + 4 3x2 + 4 2x 1
4x + 1 4x2 + 2 4x3 3x2 + 1 2x
2x + 4 2x + 1 x2 + 2 4x3 + 6x 3x2 + 3

3x2 2x + 1 4x + 1 3x2 + 3 4x3 + 2x
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(σ, δ) W codes

Definitions

a) f (t) ∈ R = A[t;σ, δ] is a W-polynomial if f (t) is monic and
there exist elements a1, . . . , an ∈ A such that
Rf (t) = ∩i=n

i=0R(t − ai ).

b) The n × r generalized Vandermonde matrix defined by
a1, . . . , ar is given by:

Vn(a1, . . . , ar ) =


1 1 . . . 1
a1 a2 . . . ar
. . . . . . . . . . . .

Nn−1(a1) Nn−1(a2) . . . Nn−1(ar )

 .

The Wedderburn polynomials play the role of separable
polynomials.
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Proposition

Let f (t), g(t) ∈ R = A[t;σ, δ] be monic polynomials of degree n
and r respectively. Suppose that g(t) is a Wedderburn polynomial
with f (t) ∈ Rg(t) and let C be the (σ, δ)-W -code of length n
corresponding to the left cyclic R-module Rg(t)/Rf (t). Let
a1, . . . , ar ∈ A be such that Rg(t) =

⋂r
i=0 R(t − ai ). Then

(c0, c1, . . . , cn−1) ∈ C if and only if
(c0, c1, . . . , cn−1)Vn(a1, . . . , ar ) = (0, . . . , 0).
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