

Decomposition of nonnegative singular matrices into product of nonnegative idempotent matrices

Decomposition of nonnegative singular matrices into product of nonnegative idempotent matrices and mORE...(skew) codes.

ALGEBRAIC METHODS IN CODING THEORY

Ubatuba July 2017

History

Particular decompositions Nonnegative singular matrices special families of nonnegative matrices ...and mORE

Pioneers

- J.M.Howie (1966) The maps from a finite set to itself that are not onto can be presented as products of idempotents.
- J.A. Erdos (1968): singular matrices over fields.
- J. Laffey (1983): singular matrices over commutative euclidean domains.
- Hannah and O'Meara decomposition of some elements in a von Neumann ring into product of idempotent elements.
- Bhaskara Rao (2009) considered matrices over commutative PID's.
- W. Ruitenberg (1993) Matrices over Hermite domains.
- There are connections between decompositions into products of idempotents and factorizations of invertible matrices into product of elementary matrices. (Facchini-Leroy(2016), Salce-Zanardo,...)

Examples and particular decompositions

Examples

(a)
$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a-1 & 0 \end{pmatrix}$$
.

Examples and particular decompositions

Examples

$$(a) \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a - 1 & 0 \end{pmatrix}.$$
$$(a') \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.$$

Examples and particular decompositions

Examples

$$\begin{array}{l} \text{(a)} & \left(\begin{array}{c} a & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{c} 1 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} 1 & 0 \\ a - 1 & 0 \end{array}\right), \\ \text{(a')} & \left(\begin{array}{c} a & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{c} 1 & a \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} 0 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} 1 & 0 \\ 1 & 0 \end{array}\right), \\ \text{(b)} & \left(\begin{array}{c} a & ac \\ 0 & 0 \end{array}\right) = \left(\begin{array}{c} 1 & 1 + c \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} 1 - ca + c & c - cac + c^2 \\ a - 1 & ac - c \end{array}\right). \end{array}$$

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain) Product of nonnegative idempotents

Examples and particular decompositions

Examples

$$(a) \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a - 1 & 0 \end{pmatrix}.$$

$$(a') \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.$$

$$(b) \begin{pmatrix} a & ac \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 + c \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 - ca + c & c - cac + c^2 \\ a - 1 & ac - c \end{pmatrix}.$$

$$(c) \begin{pmatrix} ac & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ c & 1 \end{pmatrix},$$

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain) Product of nonnegative idempotents

Examples and particular decompositions

Examples

$$\begin{array}{l} (a) \ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a - 1 & 0 \end{pmatrix}. \\ (a') \ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}. \\ (b) \ \begin{pmatrix} a & ac \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 + c \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 - ca + c & c - cac + c^2 \\ a - 1 & ac - c \end{pmatrix}. \\ (c) \ \begin{pmatrix} ac & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ c & 1 \end{pmatrix}, \\ (d) \text{ with } b \in U(R), \ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} b(b^{-1}a) & b \\ 0 & 0 \end{pmatrix} \text{ is factorized as in } \\ (c). \end{array}$$

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain)

Particular matrices

Theorem

- (a) If R is a ring and $A \in M_n(R)$ is strictly upper triangular then A is a product of idempotent matrices.
- (b) If n > 1 and a matrix A ∈ M_n(ℝ) (resp. A ∈ M_n(ℝ⁺)) has only one nonzero row, then it is a product of (resp. nonnegative) idempotent matrices.

▲ 同 ▶ → 三 ▶

Question and particular matrices

Question

Main Question : Can real **nonnegative** singular matrices be decomposed into product of **nonnegative** idempotents ?

Question and particular matrices

Question

Main Question : Can real **nonnegative** singular matrices be decomposed into product of **nonnegative** idempotents ?

Lemma (Particular matrices)

Rank one

Proposition

Let $A \in M_n(\mathbb{R}^+)$, n > 1, be a nonnegative matrix of rank 1. Then A is a product of nonnegative idempotent matrices.

< □ > < □ >

Rank one

Proposition

Let $A \in M_n(\mathbb{R}^+)$, n > 1, be a nonnegative matrix of rank 1. Then A is a product of nonnegative idempotent matrices.

Remark (A.Alahamadi,S.K. Jain, A.L., Sathaye,2016)

It can be shown that in fact rank 1 nonnegative matrices can be decomposed into a product of *three* idempotent nonnegative matrices.

Image: A image: A

Rank two

Theorem

Let $A \in M_n(\mathbb{R}^+)$, n > 2, be a nonnegative singular matrix of rank 2. Then A is a product of nonnegative idempotent matrices.

▲ □ ▶ → □ ▶

Rank two

Theorem

Let $A \in M_n(\mathbb{R}^+)$, n > 2, be a nonnegative singular matrix of rank 2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the following easy lemma:

Lemma

Let $S \subset (\mathbb{R}^+)^n$ be a finite set such that $\dim_{\mathbb{R}} \langle S \rangle \leq 2$. Then there exist $s_1, s_2 \in S$ such that every element of S is a positive linear combination of s_1 and s_2 .

・ロト ・同ト ・ヨト ・ヨト

Counter-example

For singular nonnegative matrices of higher rank the decomposition does not necessarily exist:

Example

$$A_{\alpha} := \begin{pmatrix} \alpha & \alpha & 0 & 0 \\ 0 & 0 & \alpha & \alpha \\ \alpha & 0 & \alpha & 0 \\ 0 & \alpha & 0 & \alpha \end{pmatrix}, \quad \textit{where } \alpha \in \mathbb{R}^{+}, \; \alpha \neq 0.$$

If $A_{\alpha} = E_1 \dots E_n$ is such that $E_i^2 = E_i \in M_n(\mathbb{R}^+)$ then $A_{\alpha} = A_{\alpha}E_n$ and a direct computation shows that $E_n = Id$. Remark that $A_{\frac{1}{2}}$ is a positive doubly stochastic matrix.

< □ > < 同 > < 三 >

Nilpotent matrices

Proposition

If A is Nonnegative nilpotent there exists a permutation matrix such that PAP^t is an upper triangular nonnegative matrix.

Nilpotent matrices

Proposition

If A is Nonnegative nilpotent there exists a permutation matrix such that PAP^t is an upper triangular nonnegative matrix.

Corollary

Nonnegative nilpotent matrices are product of nonnegative idempotent matrices.

< A > < 3

quasi-permutation matrices

Definition

A matrix $A \in M_{n,n}(\mathbb{R}^+)$ is a quasi-permutation matrix if each row and each column has *at most* one nonzero element.

quasi-permutation matrices

Definition

A matrix $A \in M_{n,n}(\mathbb{R}^+)$ is a quasi-permutation matrix if each row and each column has *at most* one nonzero element.

< 🗇 🕨 < 🖻 🕨

Theorem

A nonnegative singular quasi-permutation matrix is always a product of nonnegative idempotent matrices.

Nonnegative Von Neumann inverses

Definition

A nonnegative matrix A has a nonngative von Neumann inverse if there exists a nonnegative matrix X such that A = AXA.

◆ 同 ▶ → (目 ▶

Nonnegative Von Neumann inverses

Definition

A nonnegative matrix A has a nonngative von Neumann inverse if there exists a nonnegative matrix X such that A = AXA.

For a nonnegative matrix A to have a nonegative von Neumann inverse, it must be of a very special form (quasi permutation by block with all blocks of rank one). Using this form and the previous result on quasi-permutation matrices we get the following theorem.

Nonnegative Von Neumann inverses

Definition

A nonnegative matrix A has a nonngative von Neumann inverse if there exists a nonnegative matrix X such that A = AXA.

For a nonnegative matrix A to have a nonegative von Neumann inverse, it must be of a very special form (quasi permutation by block with all blocks of rank one). Using this form and the previous result on quasi-permutation matrices we get the following theorem.

Theorem

A nonnnegative singular matrix with nonnegative von Neumann inverse is a product of nonnegative idempotent matrices.

Image: A image: A

Periodic matrices

Definitions

A matrix A is periodic if there exist positive integers l < s, such that A^l = A^s

▲ 同 ▶ → 三 ▶

Periodic matrices

Definitions

- A matrix A is periodic if there exist positive integers l < s, such that A^l = A^s
- ② The index of $A ∈ M_n(\mathbb{R})$ is the smallest k ≥ 0 such that $rank(A^k) = rank(A^{k+1})$

▲ 同 ▶ → 三 ▶

Periodic matrices

Definitions

- A matrix A is periodic if there exist positive integers l < s, such that A^l = A^s
- ② The index of $A ∈ M_n(\mathbb{R})$ is the smallest k ≥ 0 such that $rank(A^k) = rank(A^{k+1})$

Theorem

Let A be a nonnegative periodic matrix with no zero row or zero column. If either the index of A is 1 or $A > A^n$ for some n, then A is a product of nonnegative idempotent matrices.

イロト イポト イヨト イヨト

0-1 definite matrices

Definition

A matrix is a 0-1 matrix if its entries consist only of O and 1's.

(日) (同) (日) (日) (日)

э

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain) Product of nonnegative idempotents

0-1 definite matrices

Definition

A matrix is a 0-1 matrix if its entries consist only of O and 1's.

Theorem

Let $A \in M_n(\mathbb{R})$ be a singular definite 0 - 1 matrix. Then A is a product of nonnegative idempotent matrices.

- 4 同 6 4 日 6 4 日 6

Ore Extensior

- B) Polynomial maps and roots
- C) Pseudo linear transformations

▲ 同 ▶ → 三 ▶

э

 (σ, δ) -codes

Plan

- A) Ore extensions.
- B) Polynomial maps.
- (3) C) Pseudo-linear transformations.
- D) (σ, δ) -codes.
- **5** E) W (σ, δ) -codes.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 (σ, δ) -codes

Layout

History

- Particular decompositions
- 3 Nonnegative singular matrices
- Ispecial families of nonnegative matrices

5 ...and mORE

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations
- (σ, δ) -codes

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformatic (σ, δ) -codes

< 日 > < 同 > < 三 > < 三 >

Ore extensions

A a ring, D a derivation of A, for $a \in A L_a$ is the left multiplication by a.

$$D \circ L_a = L_a \circ D + L_{D(a)}$$

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformatio (σ, δ) -codes

< 日 > < 同 > < 三 > < 三 >

Ore extensions

A a ring, D a derivation of A, for $a \in A L_a$ is the left multiplication by a.

$$D \circ L_a = L_a \circ D + L_{D(a)}$$

Formalizing;

$$Xa = aX + D(a)$$

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformatior (σ, δ) -codes

< ロ > < 同 > < 回 > < 回 >

Ore extensions

A a ring, D a derivation of A, for $a \in A L_a$ is the left multiplication by a.

$$D \circ L_a = L_a \circ D + L_{D(a)}$$

Formalizing;

$$Xa = aX + D(a)$$

More generally:

Assume the polynomials in X can be written as $\sum a_i X^i$ and there are maps σ, δ from A to A such that

$$Xa = \sigma(a)X + \delta(a)$$

Then associativity of the product will give that $\sigma \in End(A)$ and δ is a σ derivation

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformatior (σ, δ) -codes

Ore extensions

A a ring, D a derivation of A, for $a \in A L_a$ is the left multiplication by a.

$$D \circ L_a = L_a \circ D + L_{D(a)}$$

Formalizing;

$$Xa = aX + D(a)$$

More generally:

Assume the polynomials in X can be written as $\sum a_i X^i$ and there are maps σ, δ from A to A such that

$$Xa = \sigma(a)X + \delta(a)$$

Then associativity of the product will give that $\sigma \in End(A)$ and δ is a σ derivation i.e. $\delta \in End(A, +)$ and

$$\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$$

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

< 日 > < 同 > < 三 > < 三 >

 (σ, δ) -codes

Examples

The set of these polynomials form a ring denoted by $R = A[X; \sigma, \delta]$ (O. Ore, 1930's) **a** $R = \mathbb{C}[t; -]$; we have ti = -it and $t^2a = t(\overline{a}t) = at^2$. $\frac{R}{R(t^2+1)} \cong \mathbb{H}$.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

< 日 > < 同 > < 三 > < 三 >

 (σ, δ) -codes

Examples

The set of these polynomials form a ring denoted by $R = A[X; \sigma, \delta]$ (O. Ore, 1930's)

•
$$R = \mathbb{C}[t; -];$$
 we have $ti = -it$ and $t^2a = t(\overline{a}t) = at^2$.
 $\frac{R}{R(t^2+1)} \cong \mathbb{H}.$

2 *p* a prime, $q = p^{l}$ and $R = \mathbb{F}_{q}[t; \sigma]$; where $\sigma(x) = x^{p}$. The center of *R* is $\mathbb{F}_{p}[t^{l}]$.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

< 日 > < 同 > < 三 > < 三 >

 (σ, δ) -codes

Examples

The set of these polynomials form a ring denoted by $R = A[X; \sigma, \delta]$ (O. Ore, 1930's)

•
$$R = \mathbb{C}[t; -]$$
; we have $ti = -it$ and $t^2a = t(\overline{a}t) = at^2$.
 $\frac{R}{R(t^2+1)} \cong \mathbb{H}$.

- **2** *p* a prime, $q = p^{l}$ and $R = \mathbb{F}_{q}[t; \sigma]$; where $\sigma(x) = x^{p}$. The center of *R* is $\mathbb{F}_{p}[t^{l}]$.
- k a field, $A_1 = k[x][y; Id., \frac{d}{dx}]$ the first Weyl algebra.
 - If $char(k) = p > 0, Z(A_1) = k[x^p, y^p]$
 - If char(k) = 0 then $Z(A_1) = k$ and A_1 is simple.

Ore Extension B) Polynomial maps and C) Pseudo linear transfor

 (σ, δ) -codes

Inner and not inner

The σ inner derivation induced by an element $a \in A$ is defined by $\delta_a \in End(A, +)$ by $\delta_a(x) = ax - \sigma(x)a$, for $x \in A$.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

・ 同 ト ・ ヨ ト ・ ヨ ト

 (σ, δ) -codes

Inner and not inner

The σ inner derivation induced by an element $a \in A$ is defined by $\delta_a \in End(A, +)$ by $\delta_a(x) = ax - \sigma(x)a$, for $x \in A$. Such a derivation can be "erased": $A[t, \sigma, \delta_a] = A[t - a, \sigma]$.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations
- (σ, δ) -codes

Inner and not inner

The σ inner derivation induced by an element $a \in A$ is defined by $\delta_a \in End(A, +)$ by $\delta_a(x) = ax - \sigma(x)a$, for $x \in A$. Such a derivation can be "erased": $A[t, \sigma, \delta_a] = A[t - a, \sigma]$. Finite ring can have non inner σ -derivation even if $\sigma \neq Id$..

Example

Let q = p', p a prime and A be the subring of $M_2(\mathbb{F}_q)$ given by

$$A=\{egin{pmatrix} a&b\0&c\end{pmatrix}|a,b\in \mathbb{F}_q,\ c\in \mathbb{F}_p\}.$$

Define σ and δ as follows:

$$\sigma(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = \begin{pmatrix} a^p & b^p \\ 0 & c \end{pmatrix} \quad \text{and} \quad \delta(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = \begin{pmatrix} 0 & b^p \\ 0 & 0 \end{pmatrix}$$

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain)

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformatio

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 (σ, δ) -code

Layout

History

- 2 Particular decompositions
- 3 Nonnegative singular matrices
- 4 special families of nonnegative matrices

5 ...and mORE

- Ore Extension
- B) Polynomial maps and roots
- C) Pseudo linear transformations
- (σ, δ) -codes

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

・ 同 ト ・ ヨ ト ・ ヨ ト

Polynomial maps

 $f(t) \in R = A[t; \sigma, \delta]$, $a \in A$, there exist $q(t) \in R$ such that $f(t) - q(t)(t - a) \in A$. This element is naturally defined to be the evaluation of f(t) at a, denoted f(a).

$$f(t) = q(t)(t-a) + f(a)$$

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

・ 同 ト ・ ヨ ト ・ ヨ ト

Polynomial maps

 $f(t) \in R = A[t; \sigma, \delta]$, $a \in A$, there exist $q(t) \in R$ such that $f(t) - q(t)(t - a) \in A$. This element is naturally defined to be the evaluation of f(t) at a, denoted f(a).

$$f(t) = q(t)(t-a) + f(a)$$

Let us compute: $t^2 = t(t-a) + ta = t(t-a) + \sigma(a)t + \delta(a) = t(t-a) + \sigma(a)(t-a) + \sigma(a)a + \delta(a)$

Hence
$$t^2(a) = \sigma(a)a + \delta(a)$$

We will write $N_i(a)$ instead of $t^i(a)$.

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

- 4 同 6 4 日 6 4 日 6

Polynomial maps

 $f(t) \in R = A[t; \sigma, \delta]$, $a \in A$, there exist $q(t) \in R$ such that $f(t) - q(t)(t - a) \in A$. This element is naturally defined to be the evaluation of f(t) at a, denoted f(a).

$$f(t) = q(t)(t-a) + f(a)$$

Let us compute: $t^2 = t(t-a) + ta = t(t-a) + \sigma(a)t + \delta(a) = t(t-a) + \sigma(a)(t-a) + \sigma(a)a + \delta(a)$

Hence
$$t^2(a) = \sigma(a)a + \delta(a)$$

We will write $N_i(a)$ instead of $t^i(a)$. Exercise: Compute $N_3(a)$

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

・ロト ・同ト ・ヨト ・ヨト

Polynomial maps

 $f(t) \in R = A[t; \sigma, \delta]$, $a \in A$, there exist $q(t) \in R$ such that $f(t) - q(t)(t - a) \in A$. This element is naturally defined to be the evaluation of f(t) at a, denoted f(a).

$$f(t) = q(t)(t-a) + f(a)$$

Let us compute: $t^2 = t(t - a) + ta = t(t - a) + \sigma(a)t + \delta(a) = t(t - a) + \sigma(a)(t - a) + \sigma(a)a + \delta(a)$

Hence
$$t^2(a) = \sigma(a)a + \delta(a)$$

We will write $N_i(a)$ instead of $t^i(a)$. Exercise: Compute $N_3(a)$ Recurrence formulas:

$$N_0(a) = 1, \quad N_1(a) = a, \quad N_{i+1}(a) = \sigma(N_i(a))a + \delta(N_i(a))a$$

Ore Extension **B)** Polynomial maps and roots C) Pseudo linear transformation (σ, δ) -codes

- 4 同 6 4 日 6 4 日 6

Roots

For $f(t) = \sum_{i=0}^{n} a_i t^i \in R$ and $a \in A$ we have $f(a) = \sum_{i=0}^{n} a_i N_i(a)$. $a \in A$ is a right root of f(t) if f(a) = 0.

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

Roots

For
$$f(t) = \sum_{i=0}^{n} a_i t^i \in R$$
 and $a \in A$ we have $f(a) = \sum_{i=0}^{n} a_i N_i(a)$. $a \in A$ is a right root of $f(t)$ if $f(a) = 0$.

Examples

- If σ = Id. and δ = 0 we have the usual evaluation N_i(a) = aⁱ. But A can be non commutative so j is not a right root of (x − j)(x − i) ∈ 𝔅[x].
- Many (right) roots: $f(x) = x^2 + 1 \in \mathbb{H}[x]$ then $f(yiy^{-1}) = 0$ for 0 ≠ y ∈ \mathbb{H} .
- (Wedderburn) D a division ring f(x) ∈ Z(D)[x] and d ∈ D such that f(d) = 0 then there exists elements a₁,... a_n ∈ D \ 0 such that

$$f(x) = (x - d^{a_1}) \dots (x - d^{a_n}).$$

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformation (σ, δ) -codes

< 日 > < 同 > < 三 > < 三 >

Examples

More examples:

Examples

• Consider
$$t^2 \in A_1(k) = k[x][t; Id., \frac{d}{dx}]$$
 we have $t^2 = (t - \frac{1}{x})(t + \frac{1}{x}).$

Gordon Motzkin: Let D be a division ring and f(x) ∈ D[x] the roots of F(x) in D belong to at most deg(f) conjugacy classes

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformation (σ, δ) -codes

Examples

More examples:

Examples

• Consider
$$t^2 \in A_1(k) = k[x][t; Id., \frac{d}{dx}]$$
 we have $t^2 = (t - \frac{1}{x})(t + \frac{1}{x})$.

Gordon Motzkin: Let D be a division ring and f(x) ∈ D[x] the roots of F(x) in D belong to at most deg(f) conjugacy classes

A nice formula: let $f(t), g(t) \in R = D[t; \sigma, \delta]$ where D is a dvision ring and $a \in D$.

$$(fg)(a) = \left\{ egin{array}{cc} 0 & ext{if } g(a) = 0 \ f(a^{g(a)})g(a) & ext{if } g(a)
eq 0 \end{array}
ight.$$

where for $a \in D$ and $c \in D^*$ we define $a^c = \sigma(c)ac^{-1} + \delta(c)c^{-1}$

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 (σ, δ) -codes

Layout

History

- 2 Particular decompositions
- 3 Nonnegative singular matrices
- 4 special families of nonnegative matrices

5 ...and mORE

- Ore Extension
- B) Polynomial maps and roots
- C) Pseudo linear transformations
- (σ, δ) -codes

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

- 4 同 6 4 日 6 4 日 6

Pseudo linear transformations

 A, σ, δ , as usual $R = A[t; \sigma, \delta]$

Definition

Let $_AV$ be a left module. A map $T \in End(V, +)$ is a P.L.T. if

$$T(lpha oldsymbol{v}) = \sigma(lpha) T(oldsymbol{v}) + \delta(lpha) oldsymbol{v} \quad orall lpha \in A, orall oldsymbol{v} \in V$$

 $_AV$ then becomes a left *R*-module: $(\sum_{i=0}^n a_i t^i) \cdot v = \sum_{i=0}^n a_i T^i(v)$ for $v \in V$

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

- 4 同 6 4 日 6 4 日 6

Pseudo linear transformations

 A, σ, δ , as usual $R = A[t; \sigma, \delta]$

Definition

Let $_AV$ be a left module. A map $T \in End(V, +)$ is a P.L.T. if

$$T(lpha \mathbf{v}) = \sigma(lpha) T(\mathbf{v}) + \delta(lpha) \mathbf{v} \quad orall lpha \in \mathcal{A}, orall \mathbf{v} \in \mathcal{V}$$

 $_AV$ then becomes a left *R*-module: $(\sum_{i=0}^n a_i t^i) \cdot v = \sum_{i=0}^n a_i T^i(v)$ for $v \in V$

Left *R*-modules \Leftrightarrow Left *A*-module and a P.L.T.

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

Pseudo linear transformations

 A, σ, δ , as usual $R = A[t; \sigma, \delta]$

Definition

Let $_AV$ be a left module. A map $T \in End(V, +)$ is a P.L.T. if

$$T(lpha oldsymbol{v}) = \sigma(lpha) T(oldsymbol{v}) + \delta(lpha) oldsymbol{v} \quad orall lpha \in A, orall oldsymbol{v} \in V$$

 $_AV$ then becomes a left *R*-module: $(\sum_{i=0}^n a_i t^i) \cdot v = \sum_{i=0}^n a_i T^i(v)$ for $v \in V$

Left *R*-modules \Leftrightarrow Left *A*-module and a P.L.T.

Examples

•
$$\delta$$
 is a P.L.T. defined on $V = A$

② Let
$$C \in M_n(A)$$
 then $T_C : A^n \longrightarrow A^n$ defined by
 $T_C(v) = \sigma(v)C + \delta(v)$ for any $v \in A^n$, is a P.L.T

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain)

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

More PLT

Proposition

Let $R = A[t; \sigma, \delta]$.

■ $p(t) \in R$, $a \in A$, $p(a) = p(T_a)(1)$

3 For
$$x \in U(R) \ p(a^{x})x = p(T_{a})(x)$$

 $If T :_A V \longrightarrow_A V is a PLT, then the map$

$$\phi_T: R \longrightarrow End(V, +): f(t) \mapsto f(T)$$

is a ring homomorphism.

• for $f, g \in R$ and $a \in A$, we have $(fg)(a) = f(T_a)(g(a))$

If A = D is a division ring and a ∈ D then ker(P(T_a)) is a right vector space over the division ring C(a) := {x ∈ D*|a^x = a} ∪ {0}

Ore Extension B) Polynomial maps and roots C) Pseudo linear transformations (σ, δ) -codes

< 日 > < 同 > < 三 > < 三 >

 (σ, δ) -code

Factorizations

Theorem {Lam, L.}

Let *D* be a division ring, $\sigma \in End(D)$ and δ a σ -derivation. A polynomial $f(t) \in D[t; \sigma, \delta]$ has roots in $I(\sigma, \delta)$ -conjugacy classes $\Delta(a_i) := \{a_i^x = \sigma(x)a_ix^{-1} + \delta(x)x^{-1} | x \in D^*\}$. We have

$$\sum_{i=1}^{l} Dim_{C_i} Ker(f(T_{a_i})) \leq deg(f(t))$$

The equality occurs if an only if f(t) is a Wedderburn polynomial.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 (σ, δ) -codes

Layout

1 History

- 2 Particular decompositions
- 3 Nonnegative singular matrices
- Ispecial families of nonnegative matrices

5 ...and mORE

- Ore Extension
- B) Polynomial maps and roots
- C) Pseudo linear transformations
- (σ, δ)-codes

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

Image: A = A

 (σ, δ) -codes

Ulmer, Boucher

Just to give an idea: there are 603 different nontrivial right divisors of $t^{14} - 1 \in \mathbb{F}_4[t; \theta]$ with $\theta(z) = z^2$ comparing with 25 different factors of $x^{14} - 1 \in \mathbb{F}_4[x]$.

F. Ulmer, D. Boucher started to use skew polynomial rings ($\delta = 0$) to create codes and study them. As an alphabet they not only used fields but also cyclic modules of the form $\frac{R}{Rf(t)}$ where $R = F[t; \sigma]$.

Example

In
$$\mathbb{F}_4[t; \theta]$$
 with $\theta(z) = z^2$ where $\alpha \in \mathbb{F}_4$ satisfies $\alpha^2 + \alpha + 1 = 0$,
we have: $t^4 + t^2 + 1 = (t^2 + t + 1)^2 = (t^2 + \alpha^2)(t^2 + \alpha) = (t^2 + \alpha)(t^2 + \alpha^2) = (t^2 + \alpha^2 t + 1)^2 = (t^2 + \alpha t + 1)^2$,

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

 (σ, δ) -codes

$$C < \frac{R}{Rf}$$
 with $R = A[t; \sigma, \delta]$

Definition

Let $f(t), g(t) \in R = A[t; \sigma, \delta]$ monic and such that $f(t) \in Rg(t)$. A subset of $C \subseteq A^n$ consisting of the coordinates of the elements of Rg/Rf in the basis $\{1, t, \ldots, t^{n-1}\}$ is called a cyclic (f, σ, δ) -code.

Theorem

Let $g(t) := \sum_{i=0}^{r} g_i t^i \in R$ be a monic right divisor of f(t).

- (a) The code corresponding to Rg/Rf is a free left A-module of dimension n r where $\deg(f) = n$ and $\deg(g) = r$.
- (b) If $v := (a_0, a_1, \dots, a_{n-1}) \in C$ then $T_f(v) \in C$.
- (c) The rows of the matrix generating the code C are given by

$$(T_f)^k(g_0, g_1, \ldots, g_r, 0, \ldots, 0), \text{ for } 0 \le k \le n - r - 1.$$

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

 (σ, δ) -codes

Example

Consider
$$f(t) = t^5 - 1 \in R = \frac{\mathbb{F}_5[X]}{X^5 - 1}[t; Id., \frac{d}{dX}]$$
. In this case $f(x) = f(x + x^4) = 0$ (with $x = X + (X^5 - 1)$) and $g(t) = [t - x, t - (x + x^4)]_I = t^2 - 2xt + x^2 - 1$. The generating matrix of the code corresponding to the module Rg/Rf is given by:

$$\begin{pmatrix} x^2 - 1 & -2x & 1 & 0 & 0 \\ 2x & x^2 + 2 & -2x & 1 & 0 \\ 2 & 4x & x^2 & -2x & 1 \end{pmatrix}$$

Lemma

$$\begin{aligned} f(t), p(t), q(t) &= \sum_{i=0}^{n-1} \in R = A[t; \sigma, \delta] \text{ such that} \\ deg(q(t)) &< deg(f(t)) = n. \text{ Then} \\ p(t)q(t) &\in Rf(t) \Leftrightarrow p(T_f)(q_0, \dots, q_{n-1}) = (0, \dots, 0) \end{aligned}$$

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain)

500

Ore Extensior

- B) Polynomial maps and roots
- C) Pseudo linear transformations

< 日 > < 同 > < 三 > < 三 >

 (σ, δ) -codes

Theorem

Let $f, g, h, h' \in R$ monic such that f = gh = h'g and let C denote the code corresponding to the cyclic module Rg/Rf. Then the following statements are equivalent:

(i)
$$(c_0, ..., c_{n-1}) \in C$$
,
(ii) $(\sum_{i=0}^{n-1} c_i t^i) h(t) \in Rf$,
(iii) $\sum_{i=0}^{n-1} c_i T_f^i(\underline{h}) = \underline{0}$,

Definition

For a left (resp. right) linear code $C \subseteq A^n$, we say that a matrix H is a control matrix if C = lann(H) (resp. C = rann(H)).

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

< 日 > < 同 > < 三 > < 三 >

 (σ, δ) -codes

Corollary

 $f, g, h, h' \in R = A[t; \sigma, \delta]$ monic such that f = gh = h'g. Then $H = {}^t (\underline{h}, T_f(\underline{h}), \dots, T_f^{\deg(f)-1}(\underline{h}))$ is a control matrix of the code corresponding to Rg/Rf.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

 (σ, δ) -codes

Corollary

 $f, g, h, h' \in R = A[t; \sigma, \delta]$ monic such that f = gh = h'g. Then $H = {}^t (\underline{h}, T_f(\underline{h}), \dots, T_f^{\deg(f)-1}(\underline{h}))$ is a control matrix of the code corresponding to Rg/Rf.

Example

$$\begin{split} f(t) &= t^5 - 1 = g(t)h(t) = h(t)g(t) \in R := \mathbb{F}_5[x]/(x^5 - 1)[t; \frac{d}{dx}],\\ \text{with } h(t) &= t^3 + 2xt^2 + (3x^2 + 2)t + (4x^3 + 3x) \text{ and}\\ g(t) &:= t^2 - 2xt + x^2 - 1 \ . \ C \text{ corresponding to } Rg(t)/(t^5 - 1). \end{split}$$

$$H = \begin{pmatrix} 4x^3 + 3x & 3x^2 + 2 & 2x & 1 & 0\\ 2x^2 + 3 & 4x^3 + 4 & 3x^2 + 4 & 2x & 1\\ 4x + 1 & 4x^2 + 2 & 4x^3 & 3x^2 + 1 & 2x\\ 2x + 4 & 2x + 1 & x^2 + 2 & 4x^3 + 6x & 3x^2 + 3\\ 3x^2 & 2x + 1 & 4x + 1 & 3x^2 + 3 & 4x^3 + 2x \end{pmatrix}$$

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

э

 (σ, δ) -codes

(σ, δ) W codes

Definitions

a) $f(t) \in R = A[t; \sigma, \delta]$ is a W-polynomial if f(t) is monic and there exist elements $a_1, \ldots, a_n \in A$ such that $Rf(t) = \bigcap_{i=0}^{i=n} R(t-a_i).$

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

 (σ, δ) -codes

(σ, δ) W codes

Definitions

a) $f(t) \in R = A[t; \sigma, \delta]$ is a W-polynomial if f(t) is monic and there exist elements $a_1, \ldots, a_n \in A$ such that $Rf(t) = \bigcap_{i=0}^{i=n} R(t-a_i)$. b) The $n \times r$ generalized Vandermonde matrix defined by a_1, \ldots, a_r is given by:

$$V_n(a_1,\ldots,a_r) = egin{pmatrix} 1 & 1 & \ldots & 1 \ a_1 & a_2 & \ldots & a_r \ \ldots & \ddots & \ddots & \ddots \ N_{n-1}(a_1) & N_{n-1}(a_2) & \ldots & N_{n-1}(a_r) \end{pmatrix}.$$

The Wedderburn polynomials play the role of separable polynomials.

Andre Leroy (Joint work with A. Alahmadi and S.K. Jain) Product of nonnegative idempotents

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformation

・ロト ・得ト ・ヨト ・ヨト

 (σ, δ) -codes

Proposition

Let $f(t), g(t) \in R = A[t; \sigma, \delta]$ be monic polynomials of degree nand r respectively. Suppose that g(t) is a Wedderburn polynomial with $f(t) \in Rg(t)$ and let C be the (σ, δ) -W-code of length ncorresponding to the left cyclic R-module Rg(t)/Rf(t). Let $a_1, \ldots, a_r \in A$ be such that $Rg(t) = \bigcap_{i=0}^r R(t - a_i)$. Then $(c_0, c_1, \ldots, c_{n-1}) \in C$ if and only if $(c_0, c_1, \ldots, c_{n-1})V_n(a_1, \ldots, a_r) = (0, \ldots, 0)$.

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

 (σ, δ) -codes

Thank you for your kind attention and ...

Ore Extension

- B) Polynomial maps and roots
- C) Pseudo linear transformations

<ロト < 同ト < 三ト

 (σ, δ) -codes

Thank you for your kind attention and ... very mild winter